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ABSTRACT 

The dynabee is a remarkable hand-held invention which accelerates an enclosed gyroscopic rotor 

to high spin rates by manipulating its axle ends within an enclosure shaped like the inside of a 

tire – comprising upper and lower opposing tracks. When the rotor possesses adequate angular 

momentum, and the enclosure is properly manipulated by the user, the axle ends can slide 

continuously against opposing tracks, with concommitant acceleration of the rotor’s spin, 

through friction between the axle ends and the tracks.  Sliding friction is responsible for the 

acceleration, through the intermediate agent of the Coriolis force. We examine the mechanics of 

the device in the most complete and realistic manner to date, using two coupled differential 

equations describing (respectively) the rotation rate of the rotor and the rate at which its axis 

precesses about the enclosure. The latter variable behaves as a damped pendulum when capture 

of the system into resonance occurs. By including the effects of gravitational acceleration on the 

system, the minimum axial spin rate that allows rotor acceleration is found. The dynamics of the 

dynabee provide a visceral analog to the mechanisms underlying the common synchronous 

rotation states of nearly all moons in the solar system, and they serve as a delightful pedagogical 

illustration of how capture probability is relevant in a classical dynamical system. 
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I. INTRODUCTION: THE MECHANISM OF ACCELERATION 

 The gyroscopic wrist exercising device 

originally known as the Dynabee1, also called 

the Force Ball, or the Roller Ball, utilizes a 

unique mechanism to accelerate an enclosed, 

roughly spherical rotor to high rotation rates – 

each end of the rotor’s axle slides while rolling 

along opposing insides of an enclosed track 

(Fig.1) , accelerated by the friction torques 

supplied at these contacts.2  A guide ring (not 

shown), piercing both ends of the axle, keeps the 

rotor centered.  Once the rotor is given an adequate initial axial spin, appropriate manipulation of 

the housing leads to its acceleration, while the rotor axle simultaneously precesses about the 

track. It is easy to see that if both ends of the axle were to slide on the same surface (say, the 

lower one in Fig.1) while precessing, the two friction torque components along the rotor’s 

symmetry axis would cancel each other out.  However, something remarkable happens when 

each axle end slides on an opposing track.  The sliding friction torques add together, with a 

resultant twice as great in magnitude as either individually! This is marvelous, as it represents a 

novel way to accelerate a gyroscopic rotor.  With the nonzero torque, the spin must either 

accelerate or decelerate, and it turns out that the acceleration’s sign depends straightforwardly on 

the value of  the axial spin   relative to the rate of precession  .  

To see this dependence, first note that during increases   and  in the precession and axial 

rotation angles, the axle’s contacts with the surface cover distances AR   relative to the rotor 

Fig. 1 Schematic of dynabee. Actual rotor is nearly spherical.  Dots on 
axle ends indicate points of sliding contact between axle and tracks.  
Friction forces  

kf   acting on the axle ends are shown for the case 

where    , wherein sliding accelerates the rotor’s axial spin   . 

Axes of the important “model coordinate system” are also shown. 
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and TR   relative to the track, where RA and RT are the axle and track radii.  These distances are 

the same when there is no slipping: A TR R  =  , in other words   = , where /T AR R  .  

It follows that if    the axle will slide while rolling, but in what direction?  Fig.1 depicts the 

situation when    , corresponding to a slowly spinning axle, in which case both kinetic 

friction forces generate torques which are seen to spin up the rotor.  The torque reverses sign 

when      , and the rotor decelerates. 

Synchronization of the frequency of manipulation of the housing with that of the precession is 

also critical to the acceleration process. Heyda3 relates motion of the rotor to the torque supplied 

by the user, without directly addressing the intermediate agent of friction. Gulick and O’Reilly4 

describe the kinetics of this device in the most complete manner prior to this work, but they 

only considered static friction (rolling without slipping). Therefore the ratio of axial spin to 

precession rate of the rotor’s symmetry axis is assumed in 4 to be precisely equal to .  It is clear, 

however, that sliding friction is the critically important process that accelerates the rotor, since 

the mechanism of initiating the desired motion involves rapid acceleration of the rotor’s spin 

(e.g. by dragging the exposed part of the rotor against a frictional surface), followed by a sudden 

tilt of the housing, such that the axle ends begin to slide immediately against the track.  Herein 

we examine equations of motion for the system in the case of sliding friction and gravity. 

3 and 4 describe different methods of accelerating the rotor, both of which are typically 

discovered by users as they learn to use the device.  3 adopts the simplest method, which involves 

rocking the housing back and forth with simple harmonic motion about a fixed horizontal axis.  

When the rocking frequency coincides with that of axial precession, with a suitable phase lag, 

acceleration of the rotor occurs.  4 describes a more effective method of manipulating the 
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housing, which we also adopt (Section II). The method in 3 is simpler to perform, but less 

efficient at accelerating the rotor.  

II. COORDINATE SYSTEMS AND KINEMATIC VARIABLES 

The housing contains two opposing circular tracks, like the inside of a tire.  When in operation, 

the two axle ends are in contact with opposite surfaces. An inertial coordinate system (xI, yI, zI) is 

defined such that the zI-axis is in the vertical direction, opposite to gravity, with the origin at the 

center of the track (Fig.2a).  We use a ZXZ Euler rotation sequence5  to transform from the 

inertial coordinate system to the coordinates fixed to the track, which are denoted by (xT, yT, zT).  

This involves sequential rotations by φT, θ, and T about the zI-axis, the resulting x’ axis, and the 

resulting z’’ axis, respectively.  Following 4 we prescribe θ as a constant, and (importantly) that 

T = - φT .  If T  increases at a constant rate, this peculiar prescription leads to motion of the 

housing that superficially resembles the wobbling of a coin on a tabletop – notably with the zT-

axis precessing about the vertical inertial axis, with constant coning angle θ (Fig.2a). The phase 

of this wobbling motion can be followed using the line of intersection between the (xT,yT)-plane 

Fig.2  (a) sequential ZXZ Euler rotations by T ,  , and T  effect the transformation from inertial space to the track 

coordinate system. Note that T T = − . (b) sequential ZX Euler rotations by  and /2 transform from the track to the model 

coordinate system, and a final Z-axis rotation leads to the body coordinate system (not shown). (c) typical approximate 

equilibrium orientation where the angle T   − .  Note that the  +zb-axis leads the ascending node of the ( ),T Tx y -plane 

on the ( ),I Ix y -plane. 
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and the (xI,yI)-plane (i.e. the nodal line of the (xT,yT)-plane relative to the inertial coordinate 

system) which precesses about the zI-axis as φT increases.  Notably, the track undergoes no net 

rotation once φT completes a full cycle – the housing is back where it started. For visualization of 

the prescribed motion of the housing, it helps to note that φT is equal to the longitude of the 

ascending node of the (xT,yT)-plane, as measured in the inertial coordinate system.  

Having prescribed the track’s motion relative to inertial space, we now seek to describe the 

motion of the rotor relative to the track. For simplicity, we assume that the diameter of the axle 

ends is negligibly smaller than the separation between the lower and upper tracks, so the axis of 

the rotor lies within the ( ),T Tx y -plane. From the track coordinate system, we employ another 

ZXZ Euler rotation sequence (see Fig.2b), rotating by φ about the zT axis, then by /2 about the 

resulting x-axis, thus arriving at the model coordinate system, with coordinates denoted by (xm, 

ym, zm).  The third Euler rotation, by   about the zm axis, leads to the body coordinate system 

defined by (xb, yb, zb). The zm axis is coincident with the zb axis (i.e. parallel to the axle of the 

rotor), the ym axis is parallel to the zT  axis, and the xm axis lies in the plane of the track.  We 

further prescribe that the +zb -end of the axle rotates counterclockwise ( 0  ), while precessing 

counterclockwise ( 0  ) about the ym-axis (as in Fig.1).  This motion requires the + zb – end of 

the axle to be pressed against the upper track surface.  Note that the model coordinate system 

does not rotate with the rotor, but remains coincident with the figure of the axisymmetric rotor, 

while it precesses with the zb-axis about the track (Fig.2c).  

We now define a new variable  

     T   −        (1) 



  

 6  

and we replace   by T+  wherever it appears. Note that if  = 0, so that φ = φT, then the + zb 

axis lags the ascending node by π/2, and points toward the track’s lowest point in the inertial z -

coordinate. Therefore  may be identified with the angular position of the positive zb axis on the 

(xT, yT)-plane, relative to the point of lowest geographical altitude. Also note that if = π, the 

same axis is at the highest altitude.  We show below that during normal operation of the device, 

the axle behaves as a damped pendulum, oscillating about a position close to = π.  This 

equilibrium position of the rotor’s spinning figure is depicted approximately in Fig (2c). 

III. FICTITIOUS TORQUES IN THE MODEL COORDINATE SYSTEM 

We develop the equations of motion in the noninertial model coordinate system, where inertial 

torques caused by the Coriolis, the centrifugal, and the angular acceleration (hereafter “spin-up”)  

forces act on the rotor.   With the prescribed motion of the track, the angular velocity of the 

model coordinate system, expressed in the model coordinate system is given by  

1 2 3[ , , ] [ sin sin , cos , cos sin ]ω
T T

m m m m T T T        = =  +  −   (2) 

The effective body torque deff  on an element of mass dm in the body of the rotor can be written 

in terms of the effective body force dFeff using 

τ r Feff effd d=      (3) 

where  

     2 ( )F ω v ω ω r ω r geff m m m m md dm= −  −   −  +   (4) 

r and vm are the position and velocity vectors of rotor mass element dm, measured relative to the 

model coordinate system. The terms on the right-hand side of the above equation are, in order: 
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the Coriolis, centrifugal, spin-up, and gravitational forces commonly examined in advanced 

undergraduate mechanics courses5.  All are inertial (i.e. fictitious) except gravity. Integration of 

the inertial torque components over all mass elements in the rotor is straightforward, though 

laborious, and we omit the details here for brevity.  The result is as follows, expressed in the 

model coordinate system: 

( )

2

3

3

( sin sin cos sin )cos cos sin ( cos )

sin sin sin cos sin cos

0 0
cos sin sin sin

τ

T T oT T

f T T T T o

T T

I

I I I

I

       

       

   

 −  +     − −  +  
      =  +  −   + − +      
          +  

 

  (5) 

     Coriolis  centrifugal   spin-up 

where I0 , I3 and 3 0I I I  −  are the moments of inertia about the equatorial and polar axes of the 

rotor, and their difference, respectively. In the model coordinate system, the torque due to gravity 

about the center of mass (coincident with the origin) is zero by symmetry. 

IV. REAL TORQUES IN THE MODEL COORDINATE SYSTEM 

In the model coordinate system there are two important pairs of contact forces on the rotor: the 

normal forces of contact between axle ends and track, and the kinetic friction forces at those 

contacts. To determine their torques, we first use the rotations described in Section II to express 

the net gravitational force in the model coordinate system. This gives 

    [ sin sin , cos ,cos sin ]g
T

mm mg   = −  −     (6) 

where m is the mass of the rotor. Gravity acts effectively through the center of mass, which 

remains at the origin. The x and z components of mgm tend to cause drift of the rotor toward the 

edges of the track plane, where they are balanced by normal forces of sliding contact between the 
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(assumed frictionless) guide ring and the inner edge of the circular hole within which the rotor is 

confined.  Those forces are directed radially inward and generate no torque, but the ym-

component is balanced by the normal forces of contact between the axle ends and the track.  

Thus, 

cosN N mg − += +      (7) 

where N+ and N- are the magnitudes of the normal forces exerted by the track on the respective 

ends of the axle.   

The net torque on the rotor due to the normal forces is then: 

     (2 cos ) 0 0τ
T

N TR N mg += +     (8) 

and the torque due to sliding friction forces acting at the locations of the normal forces is  

   0 , (2 cos ) , (2 cos )τ
T

K T SR N mg S R N mg S   + += + − +   (9) 

where  

sgn( )S   − .     (10) 

/ T AR R  is the track-to-axle radius ratio defined previously, and µ is the coefficient of sliding 

friction between the axle ends and the tracks.   For a given precession rate  , Eq.(10), inserted 

into Eq.(9) embodies the fact that for low spin rate  , sliding friction acts to accelerate spin and 

to decelerate the precession. The direction of sliding friction, and the consequent torque,  

reverses if    since the direction of sliding contact between the axle and the track reverses.  

Thus the rotor can only accelerate if S = -1.   
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V. EQUATIONS OF MOTION 

The sum of the torques given in (5), (8) and (9) are equated to the rate of change of the angular 

momentum relative to the model coordinate system. The resulting equations of motion are 

0

2 2

3 0

3 3

0 cos sin cos [ cos ] sin ( sin cos ) (2

0 sin sin sin sin cos [ cos ]

0 0 sin ( cos sin )

T T T T T T

T T T

T T

I I R N

I I I

I I

        

      

   

+
     − −   + − +   
      

=  + −   + − + +      
        −         

cos ) 0

0 (2 cos )

0 (2 cos )

T

S

mg

R N mg S

R N mg S



 

 

+

+

+   
   

+ +
   
   − +   

(11,12,13) 

     Coriolis    centrifugal      spin-up   normal            kinetic friction 

To promote insight into the various terms, we have labeled their sources appropriately.  Identical 

equations arise if developed in inertial space, with the inertial torques shifted to the left-hand 

sides.  Because typically    , we now define /D    and cast the equations in terms of 

the dependent variables D and , for which the rates of change are closer in magnitude. We 

prescribe T  as constant (steady gyration of the track),  we define the dimensionless time 

n Tt t= , and we hereafter express all time derivatives with respect to tn.  Unless otherwise 

stated, all variables from here onward are stated in their dimensionless forms.   Note that the 

rotor can steadily accelerate only if (dimensionless) D  < 1. The dimensionless torque due to the 

normal forces becomes: 

2

0(2 cos ) ( )T TN R N mg I += +       (14) 

and Eq. (11) is arranged as an expression for N : 

    ( cos ) (1 )sin cos ( cos ) sin cosDN      =  + + −   + +     (15) 

where 3

0

I
I

  .  Finally, Eqs. (12) and (13) are written as follows: 
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2(1 )sin sin cos sin sinD SN     = −   +  +    (16) 

2

1
sin sinD NS


 

  
= −   −       (17) 

where Eq. (15) is inserted into the last terms of (16) and (17), and Eq.(10) is written 

  sgn( 1)DS  − − .        (18) 

Eqs. (16) and (17), using (15) for N ,  are coupled differential equations defining the evolution 

of D and .  

We note here that for the original dynabee, 29  . In the nondimensional Eqs.(16) and (17), 

reasonable values of 1/ as well as sin  and   are small.  We consider them to be of order 

1  , and keep terms to order unity in Eq.(16), and to order   in Eq.(17), obtaining the 

following simplified equations: 

( ) ( )sin sin cosD D DS S    − −  =    (19) 

1
sin sin [ ( cos )]D DS


   

 

−
=   −  +      (20) 

If S = +1 , Eq.(19) has no stable solution, because the second term behaves as an “accelerative 

friction”, but if S = -1 and  D  is slowly varying, it describes a damped pendulum with a stable 

equilibrium value near   .  For ease of visualization, we temporarily consider the new 

variable 

       −       (21) 

so the equations become 
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( ) ( ) ( )sin sin cosD D D       + + = −   (22) 

   
1

sin sin ( cos )]D D


      

 
= + + .    (23) 

 If D  < 1 and slowly varying, the steady-state solution to Eq.(22) is given by 

     1

0 sin −= −       (24) 

where     
tan




       (25) 

Eq.(22) describes a simple damped pendulum, in the presence of a gravity-like torque 

(proportional to sin− ) and a constant negative torque that deflects its equilibrium from 0 =  

(hence Eq 24).  Eq.(24) also shows that there can be no equilibrium value of   unless tan  .  

This requirement has been observed by the author6 . Linearization of Eq.(22) about 0 =  shows 

that the frequency of small oscillations of the resulting damped harmonic oscillator is  

    2 2 2 2

0 sin cosD     −     (26) 

and the linear damping coefficient (cf.5) of the system is  

2 D   .      (27) 
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The behavior near equilibrium is underdamped 

for 0   and overdamped for 0  .  

Fig.(3a) shows contours of  0 and  , as 

functions of D  and µ. A reasonable initial 

state for the dynabee is shown with a star. 

Behavior of the system near equilibrium is 

underdamped, approaching the equilibrium 

value within a single precession cycle period, 

sin 2 /hou g T    (see Fig.3b). 

VI. ACCELERATION OF THE SPIN 

When   is close to equilibrium, Eq.(23) predicts that 

D  increases exponentially, with an e-folding time of 

cos



 
  dimensionless units.  This timescale is  

roughly two orders of magnitude longer than the 

variations of , thus validating the requirement that D

varies slowly.  At high rotation rates, it is reasonable to assume that turbulent friction roughly 

proportional to D 2 may ultimately limit the acceleration of the spin7,8,9,10. Experimental data 

exist for a rapidly rotating disk of radius R immersed in air of density  7,8,9.  The retarding 

torque is approximated by 

    
5 21

2drag mC R  =       (28)  

Fig. 3a:Contours of 0 (dashed) and ( dotted) for system 

near equilibrium, for parameters appropriate to the 

dynabee. θ=15 degrees, =1.9, =29. Star shows a 
reasonable value near initial state. 

Fig.3b Numerical integration of Eq.(19) for initial 
condition indicated in Fig.(3a). 
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 (cf. 8,9), where Cm is the moment coefficient, which is a function of the effective Reynolds 

number Re for the system: 

    
2

Re R 


=        (29) 

where R is radius,  is angular speed and  is the kinematic viscosity of air: ~1.5x10-5m2/sec 11. 

For  = 1.2kg/m3, a rotation rate of a few x 10Hz, and for R ~2.6cm, corresponding to the 

original Dynabee, Re ~104,which corresponds to values of Cm ~.03 9.  Relevant experimental 

data for a dynabee-like system (partially enclosed housing with spherical rotor) are not known to 

the author.  Cm can only be adequately evaluated by experiment, but geometric considerations 

suggest that the turbulent friction torque may be considerably larger for a sphere than for a disk, 

due to the larger surface area with high velocity relative to surrounding air. 

With  in equilibrium, we write the dimensionless equation of motion for D  as: 

1
1 D

D D

D a


 



 
= − 

 
     (30) 

where      
cos

D




 
       (31) 

and     3

2 5

2 cos

m

I
a

C R

 


      (32) 
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is a constant describing the characteristic ratio of the accelerating torque, due to sliding friction 

at the points of contact, to the torque due to turbulent friction. The solution to Eq.(30) can be 

expressed analytically: 

0

0

exp

exp 1

D

D

D

D

D

t
a

t
a









 
 
 =

  
− +   

  

     (33) 

For t  << D, Eq.(33) reduces to 

exponential growth, while as t → 

infinity, D  approaches a.  Fig.4 

shows the solution given by Eq.(33), 

for a range of values of Cm.  If D  

exceeds unity, the direction of the 

sliding friction torque reverses, 

reversing the acceleration.  Therefore, 

these considerations suggest that the 

(dimensional) rotational speed of the device 

should maximize near T = , never 

achieving equilibrium between turbulent friction (retarding) and sliding friction (accelerating) 

torques.  Typically, users of the dynabee gyrate the housing at a maximum frequency of ~2Hz, 

indicating that the maximum spin frequency is ~ x(2Hz) ~60Hz, agreeing with results of 

existing claims of maximum achieved rotation rates 2,3.  

 

 

Fig.4  Evolution of  D  once resonance is achieved, for various 

values of the moment coefficient Cm. µ=0.1. 
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VII.    TRANSITION FROM SLIDING TO ROLLING 

What happens as D  reaches 1?  At that point, all sliding must stop, and static friction must 

replace sliding friction.  The precise behavior requires a more advanced model of friction than 

the simple one commonly used in the classroom (which we are tacitly adopting here), where a 

constant value of sliding friction instantaneously jumps to the higher static value when sliding 

ceases.  The transition from sliding to static friction is an ongoing, complex topic of study12 that 

is dependent on numerous factors beyond the scope of this work.  In any case, D  cannot exceed 

1 or the sliding friction would reverse direction, decelerating the rotor.  There are potential 

observables that would indicate that the transition has occurred, if the precise motion of the 

housing and rotor were to be measured, say, by embedded MEMS motion measurement units 

(MMUs) in the housing and the rotor .  For example, Eqs. (24) and (25) predict a smaller 

equilibrium value of  (larger negative value of 0 ) under static friction.  That is, the rotor’s 

+axis should lead the ascending node (section II) by a smaller angle as static friction ensues. 

Also, in order to maintain resonance, Eq.(25) indicates there would be a larger minimum tilt of 

the housing for which resonance is possible.  The transition from sliding to static friction for the 

dynabee would be a fascinating subject of future study. 

VIII.  STARTING THE DEVICE IN THE PRESENCE OF GRAVITY 

The presence of gravitational acceleration g imposes a requirement on the minimum axial spin 

rate  that allows rotor acceleration.  Here the well-known classroom problem of a motorcycle at 

the peak of a loop-the-loop is conceptually useful. The motorcycle must exceed a critical speed 

in order to maintain contact with the track when it is at the peak of the loop, upside down.  The 

required speed can be found by requiring the magnitude of the normal force exerted by the track 
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on the motorcycle to be greater than zero.  Similarly in our development, the computed 

magnitude of N+ must be greater than zero, if the upper axle end is to remain in contact with the 

upper track.  If this condition is not met, both ends of the axle will lie against the lower track, 

held down by the weight of the rotor.  Setting N+ to zero in Eq.(11) gives the minimum spin 

frequency:         

   
2 2 2

3

2 2

2 2 4 4

MIN T T

B T T

R g mgR
f

CR I


  

     

   
=  = =   

   
    (34) 

In obtaining (34), we have used the fact that the first term in the Coriolis torque ( 3 cosTI  − ) 

is larger than all other torque components by a factor of 1


.  The author has observed that the 

fastest practical housing gyration frequency for most users is ~2Hz.  For the dynabee, Eq.(34) 

consequently suggests that the minimum initial spin frequency is ~ 6Hz, which agrees well with 

experiments by the author.  This corresponds to a value of D  of ~0.1.  Interestingly there would 

be no minimum spin in a zero gravity environment, such as on the International Space Station. 

Also the minimum spin for initialization of the desired motion scales inversely as the size of the 

rotor, because I3 is proportional to the radius of the rotor squared, and RT has a similar value. 

Larger devices will require proportionately lower initial spin rates for initialization of the desired 

motion.   

IX. TYPICAL OPERATION OF THE DYNABEE 

The user of the dynabee initiates the motion by imparting a modest initial spin to the rotor 

without tilting the housing.  Precession has had no time to develop, so 0 1 1T  = − = − = − .  

The initial condition is then ( ) ( )0, 1,D D  = −  where min 0 1D D   . The user then quickly 
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tilts the housing, causing opposing axle ends 

to come in continuous contact with the 

opposing tracks. The direction of this tilt 

determines 0, which in turn primarily 

determines whether resonance is achieved (see 

next section). An example of a successful 

initial condition is described by 
0

2


 = , in 

which case the upper axle end initially lies parallel 

to the ascending node of the track. The initial 

tilting action immediately causes precession ( ) 

to grow, so   becomes less negative, while axial 

spin ( D ) changes much more slowly.   

Assuming the user gyrates the housing as 

prescribed in sections II and III, with an initial 

axial spin satisfying Eq.(34), resonance is quickly 

achieved in this case. Fig.(5a) shows the general 

behavior of the system on the ( , )D - plane.  

Note that the initial conditions place the device in the region above the diagonal boundary 

(hereafter referred to as the S-boundary) prescribed by Eq.(18), where precession accelerates and 

spin decelerates (S = +1).  The rotor cannot begin steady axial acceleration unless the system 

crosses this boundary, but numerical integration of Eqs.(19) and (20) shows that this happens 

almost immediately (see Fig.5b), leading to the damped pendulum state (S = -1).  While   

Fig.5a:Sketch of the evolving system on the  ( ), D  -

plane, for successful attainment of resonance. 

Fig.5b: Actual trajectory from initial state (star) on ( , )D -

plane for 0=/2.   0, , , 0.1,1.9,29,0.15.D    =  
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approaches zero, D  begins relatively slow secular growth, eventually approaching the 

maximum value of unity, where it would cross the S-boundary again if accelerated further.  As 

mentioned in section VII, static friction may ensue if  D  reaches unity, but this has not been 

verified to the author’s knowledge.  

X. ENERGETICS AND RESONANCE CAPTURE FOR THE DYNABEE 

We now consider the evolution of the system for all values of 0 between 0 and 2. Capture of 

the dynabee into a resonant state is most easily understood from energetics of the pendulum. 

Excluding the term   , the first integral of Eq.(19) with respect to  yields the effective energy 

E: 

    ( )21
2

sin cosDE S  =  + −      (35) 

The first term on the r.h.s. is an effective kinetic energy, while the rest may be considered as 

potential energy13: 

( ) ( )sin cosDU S    −   (36) 

For S=-1, ( )U   exhibits a series of extrema at 

increasing energies  as  increases, while for 

S=+1 similar extrema occur with decreasing 

successive energies (see Fig.6). 

Local extrema in  U(), and therefore all 

captured states, only exist if  < 1, in which case 

the first maximum and minimum values of U occur at  

Fig. 6.Potential energy functions for S=-1, S=+1.Example 
initial state shown.  Initial kinetic energy is 1/2 for all 
states. 
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maxU =    minU  = −     (37a,b) 

 for S=-1, and 

maxU = −   minU  = +      (38a,b) 

for S=+1, where  

1sin −        (39) 

Since the initial value of 1 = −  (Section IX) the initial value of the kinetic energy is ½ for all 

initial states.  

X.1 MODES OF BEHAVIOR 

Most generally, the behavior of the system falls into three modes, determined entirely by the 

value of 0 . In what follows, we examine the consequences of varying 0  while maintaining the 

other nominal parameter values assumed in Section IX (see Fig.(5b) caption). 

Fig.(7a) shows E() for several cases resembling that described in Section IX. Friction quickly 

drives these states to the local potential  minimum at  = − .  The system approximates a 

simple damped pendulum. For 0   ,   capture occurs if E() falls below the maximum at 

Fig 7:(a), (b), and (c) show E() for initial conditions corresponding to mode A, mode B, and mode C. See text. 
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( )U   before that point can be reached. We refer to this behavior as mode A, and it occurs for a 

range of values given approximately by 00.29    −  . 

Fig.(7b) shows trajectories for values of 0 slightly larger than  − .  Here the trajectories do 

not suggest a damped pendulum – most notably for the highest values of 0, where the energy 

alternately increases and decreases before reaching resonance.  We refer to this as mode B. For 

the parameter values assumed here, mode B results when 0  is in the range approximately given 

by 0 1.35 −    .  Beyond the upper limit for 0, the system has enough energy to crest the 

maximum value of U when  =  . Escape occurs, and  diverges toward negative infinity. This 

behavior, referred to as mode C, results for all values of 0  in the approximate range given by  

01.35 2.29    , whereafter mode A repeats. Several mode C trajectories are shown in 

Fig.7c. These modes are most easily understood on the ( , )  - phase plane. In Fig.(8), 

trajectories are shown for each mode, against contours of constant E. Black dots denote initial 

conditions for various values of 0 , while trajectories for modes A, B, and C are represented by 

solid, dashed, and dash-dot lines, respectively. The horizontal dashed line is the S-boundary 

given by Eq.(18), for the initial value of 0 0.15D = .Above the boundary, the pendulum is 

subject to ordinary linear damping (S=-1), approaching the local minimum of U, while D  

slowly accelerates. Below the boundary (S=+1), the pendulum gains energy due to “negative 

friction” --  the accelerative torque proportional to angular velocity   (Eq.(19)), while D  

slowly diminishes.  Close examination of Fig.(8) reveals that trajectories indeed spiral 

“downhill” above the S-boundary, and “uphill” below it. 



  

 21  

Note that the potential energy below the dashed line is unrelated to that above it.  The kinetic 

energy 
21

2
 remains the same when the boundary is crossed, but the potential energy takes on a 

new value defined by the contours of U in the newly entered region14. 

All relevant initial conditions lie just inside the region where S=+1. The reason for the simple 

behavior of mode A is now obvious: standard clockwise motion on the phase plane almost 

immediately leads these trajectories across the S-boundary, where ordinary damping leads to 

equilibrium at  = − . For larger values of 0 corresponding to mode B, clockwise motion of 

the system drives the pendulum deeper into the region where S=+1, and negative friction causes 

the system to climb the energy contours.  For mode B, not enough energy is gained to cause 

escape, and the trajectory eventually crosses the S-boundary into the region of ordinary damping. 

Fig 8: Behavior of dynabee on phase plane. Series of black dots span all possible initial conditions. Mode A (blue/solid), 
mode B (magenta/dashed) and mode C (red/dash-dot). 
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The evolution then follows paths identical to those of mode A. Capture has occured, after a slight 

delay.  

For values of 0 corresponding to mode C, the system forays farther below the S-boundary, 

continuing the clockwise motion on the phase plane while climbing the energy contours due to 

the negative friction. The system is drawn away from the S-boundary but reverses direction 

twice, escaping resonance and diverging toward  = − .  Note that the left-most curves of mode 

C draw the system into the region of ordinary damping, but once the S-boundary is crossed, the 

state has crossed the separatrix (not shown) which divides the potential well centered on 

 = − , from the next lowest well.  Subsequent clockwise circulation about that minimum 

brings the system back below the S-boundary, where negative friction causes  to decrease 

without bound.  For all mode C trajectories, negative precession increases at the expense of the 

axial spin..  

XI. CAPTURE PROBABILITY 

When a beginner first attempts to operate the dynabee, even after imparting an adequate initial 

spin,  he or she often fails to accelerate the rotor properly, and it stops spinning.  The system 

escapes capture into resonance. What is the likelihood that an unskilled user will achieve 

resonance when attempting to start the dynabee? There is of course an infinite variety of ways in 

which an untrained user can fail to accelerate the rotor.  However, in the context of this 

development, we can only assume that our prescribed gyration of the housing is performed 

(Section II), though not necessarily with successful values of 0. Therefore, we shall assume that 

after imparting an initial spin, the untrained user of the dynabee will initially tilt the 

track/housing in a random direction relative to the rotation axis, corresponding to a random value 
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of 0.  As we have seen in Section X.1, only a limited range of 0 values leads to capture. Thus 

the capture probability is straightforward to compute numerically.  It is simply 

max min

2
P



 −
=     (40) 

where max and min are the maximum 

and minimum values of  for which 

capture occurs.  Fig.(9) shows the results 

of a large ensemble of integrations of 

Eqs.(19) and (20). Each of the curves 

was computed for µ=0.1, but with a 

unique value of 0D  as annotated in the 

figure. With these values fixed, each 

curve represents 125 values of  in the range   .01 <  < 0.99. Each value of  corresponds to a 

unique value of θ, using Eq.(25), where the smallest value of θ for which resonance is possible is 

1 0

min tan 6 −= . For smaller values of θ, there is no minimum in U(). Thus it becomes 

increasingly difficult to start the dynabee successfully as the user employs successively smaller 

tilts of the housing, even if precessing it perfectly. Consequently, as θ is reduced, P becomes a 

very strong function of θ. However, P is seen to be a weak function of θ over most of  the range 

shown, ranging from ~50% to ~60% over most values of θ.  

Another initially surprising result is that as 0D  is increased above ~0.35, the probability of 

capture at most values of θ actually diminishes slightly. This is generally contrary to the 

experience of the user, because with a large initial spin it is easier to perceive the necessary 

Fig. 9:Capture probabilities for the dynabee. See text. 
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rhythm requited for rotor acceleration. The explanation involves the location of the S-boundary 

on the phase plane. As 0D  increases, the minima in U() become deeper, but simultaneously 

the S-boundary moves closer to 0 = , and farther from the horizontal line representing initial 

conditions. For suboptimal choices of 0  leading to mode B, this leads to escape from resonance 

for an increased range of 0.    Fig.(10) shows the same set of initial conditions as those of 

Fig(8), but with 0D =0.75. Careful inspection shows that the range of initial conditions giving 

mode A behavior increases, but the initial conditions giving mode B decreases by a larger 

amount.  The net result is that the probability of escape slightly increases.  However, once a user 

Fig. 10. Phase plane with identical initial conditions as in Fig.8, but with 0D =0.75. The S-boundary moves upwards, 

changing the conditions for capture in a subtle manner. 
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learns the most effective values of 0 (those of mode A), the probability of mode A capture 

actually increases with higher initial spin – the dynabee is indeed easier to successfully start. 

In general, the above results show that without a skilled choice of initial direction of the tilt 

(equivalently, a choice of 0), the chances are close to 50/50 that a novice will not successfully 

start the dynabee’s acceleration, even if the track is gyrated as described in section 2, and a good 

choice of θ is imparted.  Having introduced many students to the use of the dynabee, this seems 

to match the author’s experience – students who “get it right” the first time are about as likely as 

those who require multiple tries before success. 

XII. ANALOGY TO NATURAL SATELLITES IN SYNCHRONOUS ROTATION 

STATES. 

Capture into resonance of the dynabee has a fairly close analog in the tidal evolution of the orbits 

of nearly all the moons of our solar system, most specifically regarding the nearly ubiquitous 

phenomenon of synchronous rotation, wherein a satellite’s average rotational and orbital angular 

velocities are trapped in a ratio of 1/1. We now examine the similarities between these spin-orbit 

resonances and the motion of the dynabee. 

As a moon’s spin decelerates due to tidal friction, it typically approaches a state where spin 

angular velocity only slightly exceeds mean orbital angular velocity (mean motion).  In the 

simplest such state15, the orientation of a natural satellite’s minimum axis of inertia relative to 

the direction toward the primary body, measured at the point of closest approach to the primary 

body (pericenter), may be modeled as a damped pendulum, as follows: 

   ( ) ( )
223 5

2 2
1 sin 2eB A

C
n T −+ − =     (41) 
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where A, B, C, n, and  e are the smallest to largest moments of inertia, mean motion, and orbital 

eccentricity  The right-hand side of Eq.(41) is the average tidal torque16, caused by anelastic 

response within the body of the satellite to the tidal potential imposed upon it by the primary 

body. Goldreich and Peale15 relate this quantity to the MacDonald model of tidal friction16 within 

a planetary body near resonance, for which they show that the average tidal torque can be 

written: 

( )T K V
n

= − +      (42) 

where K and V are constants. 

With Eq.(42) inserted into Eq.(41), the similarity with Eq.(22) is complete, except for the 

doubling of the resonant angle in Eq.(41). We note here that in Eq.(22), friction (proportional to 

µ) is responsible for the same corresponding terms in Eq.(41), and in both cases, the presence of 

friction is responsible for stability of the resonance.  

For the spin-orbit resonance, no stable resonant state can exist unless the maximum gravitational 

torque due to the primary body acting on the permanent mass asymmetry (proportional to B-A) 

exceeds the torque due to tidal friction.  For the dynabee, the torque due to the Coriolis force in 

the model coordinate system (see Eq.(12)) plays the role of this gravitational torque, while the 

terms proportional to µ take the place of the tidal torque.  

 A primary qualitative difference between the two phenomena involves the initial conditions. In 

the case of spin-orbit resonance, the rate of change  of the resonant variable is initially positive 

as resonance is approached, as shown in Fig.(11a,b). Eventually the energy passes a maximum of 

( )U   for the last time. As  decreases to zero due to tidal friction,  reaches its maximum value. 



  

 27  

The kinetic energy vanishes 

where max( )E U = , and the 

trajectory reverses. If  enough 

energy is lost during .the two-

way passage across the potential 

well, friction leads the trajectory 

to the bottom of the well.  

Capture has occurred.  Far from 

the turning point, there is no 

correlation between the energy 

and the value of   at the 

eventual turning point. In 

Fig.(11a), a range of trajectories 

are shown which result in max  values 

within the potential well centered near 

  . The outermost solid curves 

denote the critical trajectories outside of 

which max  falls within an adjacent potential well.  A range of initial energies E  results in 

capture.  Also shown is the range of energies E  outside of which trajectories are duplicated in 

neighboring potential wells.  The capture probability for this fictitiously constructed case is 

simply 

     
E

P
E


=


      (43) 

Fig 11a. Fictitious example of approach to spin-orbit resonance. 
Outer solid curves denote boundaries across which the system enters a 
neighboring potential well. Range of initial energies for curves within 

a single well is E. Above the lowest solid curve, the next curve shows 
beginning of escape. See text. 

Fig 11b. Smaller tidal friction. All initial energies lead to capture in 
this case. See text. 
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If the system escapes resonance,   continues to reduce below zero, meaning that the satellite’s 

spin reduces ever farther below synchroneity with its orbital motion. 

In the case shown in Fig.(11b), all initial energies lead to capture.  P=1. This case approximates 

the (simplified) situation for most natural satellites in the solar system, since the great majority 

are synchronously rotating. 

Capture into spin-orbit resonance for planetary bodies is fraught with complexities, some similar 

to that caused by the dynamical boundary of Eq.(18).  For example, as orbital eccentricity is 

allowed to vary, the direction of tidal torque can reverse. Nonetheless,  in a grande réussite, 

Goldreich and Peale15 performed extensive theoretical analyses of capture probability 

analytically for a wide range of planetary bodies.  The simple model used to create Fig.(11) is 

only a fictitious version from which to draw parallels between the dynabee and spin-orbit 

resonance capture. It is illuminating to note that in spin-orbit phenomena, the small, stable 

negative value of   represents the direction of the satellite’s long axis relative to the direction of 

the tide-raising body at pericenter, whereas for the dynabee,  represents the orientation of the 

rotor’s axle relative to the point of maximum elevation (/2 ahead of the ascending node). In 

both cases, the angle would become vanishly small as friction does the same. 

XIII.  DISCUSSION AND CONCLUSIONS 

Successfully operating a dynabee is a remarkable, visceral experience in the physics and timing 

of resonance capture. It often brings a look of amazement on the face of a person who has started 

it successfully for the first time.  Yet to those who are skilled at its proper operation, it is hard to 

imagine not operating it successfully.  All probability is gone from the experience since the 

user’s central nervous system has learned the proper operation of the device (what is loosely 
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termed “muscle memory”). For those people, the author recommends trying to start the dynabee 

with precession in the opposite direction from one’s usual direction of precession of the housing. 

Probability suddenly returns! 

Some readers may find it peculiar that a classical, deterministic system can exhibit resonance 

capture that is probabilistic, but such situations are quite familiar to planetary scientists, as we 

have seen in Section XII. For spin-orbit resonances, the probabilistic nature comes from 

randomized initial energy of the pendulum when resonance is approached. When computing 

capture probability for users of the dynabee, we can only assume that the users do, in fact, gyrate 

the housing roughly as prescribed in Section II – an assumption that of course is suspect.  Under 

this assumption, however, escape from resonance means the user has chosen a poor initial phase 

of the gyration – these poor choices are eliminated by practice, so capture is no longer 

“probabilistic” for the skilled user.  Skilled timing of phase eliminates probability. 

The results of this work are generally consistent with those of previous authors 2,3, while other 

results are new. Firstly, our assumption of sliding friction is absolutely essential to any correct 

model, because the axle immediately slides at initiation of the dynabee’s motion, and continues 

to do so during operation, unless the maximum possible value of spin is reached, where  = , 

i.e. 1D = .  The details of the transition to static friction are complex and beyond the scope of 

this work. Also, we have shown that in the model coordinate system, the acceleration of the rotor 

is almost entirely caused, indirectly, by the torque due to the Coriolis force integrated over the 

body of the rotor. This torque must be balanced by that due to normal forces at the points of 

contact between rotor and track (see Eq.11), because there is no angular acceleration in the xm-

direction, measured in the model coordinate system. The normal forces in turn are responsible 
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for the friction torque necessary for acceleration and precession.  These details are not 

immediately obvious! 

In this model, the motion of the rotor is driven by the assumed steady gyration of the track, 

maintained by the user.  The user must supply the external torques, due to the normal forces and 

the sliding friction, described by Eqs (8) and (9), as well as the torques required to gyrate the 

housing (which we ignore). In the quasi-steady state where 0 = , combining Eq.(14) and the 

dominant second term on the r.h.s. of Eq.(15) gives a result for the normal force N+.  Inserting 

into Eqs(8) and (9), the magnitude of the total external torque supplied by the user, expressed in 

dimensional units, is 

  ( )2 2

3 3cos 1 1 1/ cosexternal T TI I        = + +    (44)  

This result is consistent with 3 if we apply their assumptions of rolling without sliding ( T = ). 

It is stated in 3 that the torque required to operate the dynabee is proportional to the rotation rate 

squared.  Our more general statement is that it is proportional to the product of the precession 

rate T  and the rotation rate  , which do not maintain a constant ratio as the rotor accelerates.  

For values appropriate to the dynabee, with a precession rate of / 2 2T Hz   and the maximum 

spin frequency of / 2 / 2 60T Hz   = , Eq.(44) gives a normal torque magnitude of  

~0.5Nm. Dividing by the lever arm for this torque, approximately the radius of the track, gives  

~19N or ~4.3lb which is an estimate of the force magnitude applied by the wrist of the user. This 

agrees with estimates made by the author, and is consistent with the feel of the dynabee while it 

is spinning at a typical high rate.  Eq.(44) is also consistent with the torque magnitude derived in 

2, using Heyda’s method of accelerating the device. 
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Future research with dynabee-like devices of larger scale may be useful in refinement and 

verification of friction models near the transition from sliding to pure rolling, as the highest 

possible rotation rate of the rotor is achieved.  Such devices would also be ideal as exercise 

equipment for humans in microgravity environments, since the presence of gravitational 

acceleration only hinders their operation (see Section VIII) . 

Similarities between the motion of the dynabee and celestial mechanics suggest it to be a 

valuable device for study in advanced mechanics courses. It is rare for a sensate experience like 

the operation of the dynabee to illustrate such a complex and abstract phenomenon in physics as 

resonance capture.  
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